
Conceptual Data Model Evolution in Joint Strike Fighter Autonomic
Logistics Information System of Systems Engineering

Tod Hagan
Sr. Systems Engineer
Modus Operandi, Inc.

thagan@modusoperandi.com

John Walker
Sr. Systems Engineer

NAVAIR, Patuxent River
John.Walker@navy.mil

Abstract

The complexity of modern systems engineering projects has dramatically increased over
the past two decades. One reason for this complexity is the challenge of developing a
complete and correct conceptual system data model. Systems being developed must use
information from an increasing number of information sources including legacy systems,
GOTS, COTS and custom databases. Conceptual system data models must constantly
evolve and be verified to accommodate system enhancements or COTS package
upgrades. The task of verifying conceptual model correctness is largely a manual task
with limited tools. This paper describes current research to develop tools and techniques
which allow systems engineers to perform comparative analysis between the conceptual
data model for a new system and the physical data models represented in applications,
databases and related systems. The Joint Strike Fighter (JSF) Operations and Support
budget will be reduced from two thirds to one half the total life cycle cost [JSFSDD02].
An efficient and affordable JSF maintenance program is critical to the overall project
success and ultimately the war fighter. This research is directed specifically to JSF but
has broad applicability to any project with requirements to integrate existing information
systems while maintaining a consistent enterprise model.

Key Words: Joint Strike Fighter Autonomic Logistics Information System, Enterprise
Model Data Discovery, Conceptual Model Comparative Analysis, Conceptual Model
Verification

1.0 Introduction

Currently, it is very difficult for systems engineers to perform a comparative analysis of
data models used by the many different applications, databases and related systems that
comprise their projects. This is a fundamental systems engineering task in the
development of systems that rely on integrating information from legacy systems.

mailto:thagan@modusoperandi.com
mailto:oJhn.Walker@navy.mil

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 JUN 2009

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Conceptual Data Model Evolution in Joint Strike Fighter Autonomic
Logistics Information System of Systems Engineering

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Modus Operandi, Inc.

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Specifically, the JSF must perform a comparative analysis of all the legacy logistics
systems and the conceptual model in the Autonomic Logistics Information System
(ALIS) JSF is developing. Automated tools are required to keep the ever-changing
COTS and GOTS data sources aligned with the ALIS throughout the life cycle of the
JSF. The difficult tasks in developing the automated support for analyzing, measuring or
representing data model similarity include: What is the same? What is different? How
can we display it meaningfully? For example, it may be that 90% of the fields for “part”
tables in these databases are the same, but only 20% of the data types align properly. If
two fields are strings, but one is variable length and one is fixed at 20 characters, how do
we represent the comparison in a way that is meaningful to systems engineers? The
problem increases non-linearly [LAM94] with the number of data sources (or
applications) that must be compared and normalized on the JSF ALIS Project.

Current research is being done by NAVAIR and Modus Operandi, Inc. to develop new
tools and techniques, which reduce the cost and risk of developing new conceptual
system data models. Specifically, this research is focused on answering the following
questions.

· How can relevant and meaningful data be discovered in existing information
systems?

· How can the comparison of the target conceptual model to these information
systems be automated and the comparison displayed in a meaningful and useful
way?

· As the conceptual model and or the source data structures change, how do we
revalidate the mappings between the information systems and the conceptual
model?

Answering these questions is critical to maintaining a consistent, complete, and
semantically meaningful data model for JSF ALIS.

The research questions have lead to the following research goals.

1. Develop an automated physical data model discovery capability;
2. Develop a data model comparative analysis capability;
3. Develop a data model validation and verification capability;
4. Integrate this new capability with existing tools

Goal 1, Automated physical data model discovery focuses on the ability to find data
which may represent the conceptual data model.

Goal 2, Data Model Comparative Analysis focuses on providing engineers with the
ability to compare two or more models in a meaningful way. This includes comparing
two or more sources or comparing these models with a target reference model (enterprise
model, ontology, unified warehouse model). Methods for measuring model similarity are
significant aspects of this goal.

Goal 3, Data Model V&V, will focus on validating a source system data model against a
conceptual model to ensure consistency and completeness, especially when changes are
made to the canonical form or source data models. The objective here is to maintain
consistency between source system data models and the canonical form as these evolve.

Goal 4, Integrate New Capability with Existing Tools, will focus on providing the new
capability by extending leading data modeling tools, such as Borland’s Together Control
Center or IBM’s Rational Rose. This will allow engineers to use “best of breed” tools for
enterprise modeling and have new capabilities for validating those models against the
conceptual model (enterprise model, ontology, etc.).

The research results to date for each of these goals are discussed in the following
sections.

2.0 Automated Data Discovery

Since the beginning of the computer age, organizations have developed mission critical
systems in a vertical fashion. Users use client systems and data sources developed
together in a tight integration. The interface between the data and the client system, if
documented, is mostly used to upgrade the client system. Today with the development of
system of systems horizontal integration of those legacy systems are required. New
systems need to push and pull data into those loosely documented data sources and
interfaces. Consequently the ability to discover, access or browse data in a
heterogeneous systems environment is currently a manual process. Automated data
discovery is a challenging problem because: the tight integration between legacy client
system and data sources, the inadequate or nonexistent interface definitions, the legacy
developer knowledge loss and lastly, the security and information assurance issues of
going around the client system directly to the data sources.

The ability to discover data in legacy systems is vital to JSF. The eight partner nations,
Australia, Britain, Canada, Denmark, Italy, the Netherlands, Norway, and Turkey all have
different logistic support systems. To support prognostics for the DOD, JSF ALIS will
require historical data from legacy systems such NALCOMIS, DeckPlate and CAMS
[JSFALISPDR04]. Britain has its own maintenance support system; the Logistical
Information Technology System (LITS). Currently, there is no tool to discover and
compare data in these and other legacy systems to the ALIS conceptual model.

Our research has shown two scenarios for constructing information models and
performing comparative analysis. The first scenario, a top-down approach is being used
by JSF ALIS. The second scenario, a bottom-up approach is being used by the USAF
45th Space Wing on their Knowledge Management Initiative.

Top-Down Scenario – JSF ALIS

In the top-down scenario, the conceptual model is created first using modeling tools such
as IBM’s Rational Rose, Argo UML or Borland’s Together Control Center. The

conceptual model is then reviewed and approved by cognizant project stakeholders. The
systems engineer then discovers physical data sources and maps them to the approved
conceptual model. Once the mappings have been identified, the systems engineer can
perform a comparative analysis to identify where the conceptual and physical models are
out of sync. The conceptual-to-physical model mapping is persisted so that at any time in
the future, the comparative analysis can be re-run to verify the conceptual model.

Since the emphasis of this paper is on JSF ALIS, additional details about the top-down
scenario and comparative analyses are included in later sections of this white paper.
Let’s briefly look at data discovery in the bottom-up scenario being used by another DOD
organization.

Bottom-Up Scenario – USAF 45th Space Wing

In the bottom-up scenario, physical data models are discovered and reverse engineered to
create the conceptual model. The 45th Space Wing also requires the capture of meta data
in the conceptual model about the information system being discovered. Examples of
their meta data include the type of units for a given attribute, or data source owners and
contact information. The bottom-up scenario is illustrated in the figure below.

This data discovery capability by itself has many potential applications to reduce the cost
and risk of developing new systems. One advantage is simply the ability to create a
complete model of existing enterprise information systems. Once the logical model has
been created and the mapping to physical data sources persisted, the logical model can be
exported to standard formats. For example, the USAF 45th Space Wing is using this
technology to build and enterprise model description and then export it to their
Knowledge Management Initiative.

USAF 45th Space Wing
Knowledge Management

Framework2

XML Model
Description

4

5 6

7

31

USAF 45th Space Wing
Knowledge Management

Framework2

XML Model
Description

4

5 6

7

31

In step 1 of the scenario, the modeling tool is started. Section 5 discusses the integration
of this capability with modeling tools. In step 2, existing information sources are
discovered and previewed. The discovered information sources are reverse engineered
(step 3) to create the conceptual model. Next, relations between reverse engineered
models are created (step 4). In step 5, a conceptual model description (e.g. XML) is
exported to a form usable by the 45th SW KMI. The KMI imports the model description
in step 6 to configure the data integration layer. The KMI data integration layer contains
servers which access information from physical data sources and provide a standard
interface (e.g. web services) to new client applications being developed (step 7).

Data Source Filtering

Our research indicates that most information systems contain information that will not be
relevant to the conceptual model being developed. For example, a typical Oracle
database has over 1000 system tables used to mange its configuration. These tables are
typically not important to the systems engineering that is creating a conceptual model.
Domain specific or target project dictionaries can be used to efficiently discover relevant
data in information systems. This reduces the effort by systems engineers to find the
correct conceptual model mapping. This domain intelligence can be re-used on similar
projects.

Follow-on Research

An interesting topic for follow-on research would be to investigate the feasibility of
automated logical model creation starting with system requirements or use cases. As a

result of processing the system requirements or use cases, the tool could generate a 0.1
version of the logical model.

3.0 Data Model Comparative Analysis

Three primary tasks are performed in the comparative analysis process. Before these
tasks begin, the conceptual model is created using common modeling tools such as IBM’s
Rational Rose or Borland’s Together Control Center. The first step is to discover the
physical data sources that are represented in the conceptual model. The second step is to
designate or map the conceptual model to a physical model or existing information
systems. Comparative analysis of data models is complicated by the requirement to
“map” each application’s data source into a JSF conceptual data model (JSF ontology,
enterprise model or canonical form). The third task is to perform the actual comparative
analysis to verify the conceptual model. The following figure depicts sequence of these
tasks in the context of JSF ALIS.

Now that we’ve seen the flow at a high level, let’s look at aspects of comparative analysis
in more detail. In the JSF ALIS top-down approach, the systems engineer will need to
compare the conceptual model to one or more candidate physical models. The systems
engineer needs to perform “what-if” scenarios by comparing several physical models for
“best fit” or “most similar”. The JSF ALIS scenario is illustrated in the following
diagram.

The steps for this top-down comparative analysis are as follows:

1. Conceptual model created in IBM’s Rational Rose, Borland’s Together Control
Center, etc.

2. JSF ALIS applications, CSCIs and the physical data models are developed based
on approved conceptual model.

3. While viewing the conceptual model, data sources are discovered and previewed
4. The conceptual model is mapped to physical data sources.
5. The logical and physical models are compared. Does the “as built” model match

the “as designed” model?
6. Model discrepancies reported to the user. A “Type Mismatch” as indicated in the

figure could be that one model attribute is a string while the other is an integer.
Another example shown is the case where there is no matching attribute in the
physical data source.

7. This step gives the user the ability to repair discrepancies, either the conceptual or
physical data models. This assumes the user has the proper authorization by
following the projects change process, or control over the physical data model
(which is unlikely in the case of COTS products).

A method for similarity measurement evaluates and quantifies the similarity between two
data models. This will be a “closest fit” model that is intended to provide an overall
assessment of the “likeness” between two data models on different levels (schemas,
fields, data types, etc.). For example, one candidate physical mapping may be 80%
match while a second candidate may be only 20% match in terms of its attributes.

4.0 Data Model Verification and Validation

Conceptual data model verification seeks to answer the following question; as currently
mapped, does the conceptual data model still match the physical data model? The JSF
ALIS is a hybrid solution composed of COTS and custom ALIS (e.g. JSF Prognostic
Health Monitoring) schemas. The COTS products will likely include Seibel, MXI
Technology, and a supply chain management product (currently I2, but this may change
to Honeywell, IBM, or other). An automated capability is needed to compare and verify
the ALIS conceptual data model to both COTS and ALIS schemas. This is currently a
manual process and there are literally thousands of tables. To make matters even more
challenging, the conceptual and physical data models will evolve over time and thus
increasing potential to be out of sync. There are many reasons for this including:

· COTS upgrades may change how their data is physically represented
· Upgrades or enhancements to the system resulting in schema changes
· Conceptual data model evolution as a result of system upgrades and

enhancements
· New information integration activities

Once an out-of-sync condition is detected, the ability to repair the model could prove
useful. Repair of the conceptual data model and custom schemas are possible.
Obviously, repair of the COTS schemas would not be possible. When repairs are made,
it is assumed the user has the authority and has checked out or locked the model in the
designated configuration management tool.

The JSF ALIS engineering team also needs the ability to estimate the impact of a change
(impact analysis) to physical or conceptual data models. For example, if a change is
made to a specific class or a COTS vendor changes their model, what are the impacts?
The issue of impacts caused by changes to COTS is a very interesting one beyond the
scope of JSF ALIS. As more and more projects are mandated to use (and therefore
become heavily dependent upon) COTS, the issue of analyzing and quantifying the
impact of COTS changes to the project/application is essential. Coupled with the average
lifespan of a given COTS package version, which is approximately 4 years according to
JSF ALIS engineers, any product/application with a longer lifespan will face upgrade
cycles of varying effort and risk. Helping to assess that effort and risk is an essential
need for any lengthy product lifespan.

Conceptual data model validation seeks to answer the following question; how does the
current model compare to appropriate industry standards. In the case of JSF ALIS, the
domain is DOD Aeronautical Logistics. There may be requirements for the conceptual
model to be compliant with industry reference models. Reference models such as SCOR
and ISO 11179 will certainly be of interest to JSF ALIS.

5.0 Integrate Capability with an Existing Modeling Tool

A key success criterion of our research is that the resulting tool or capability is easily
adopted by end users. The optimal approach is integration into the existing system
development processes, avoiding the need for systems engineers to learn a new tool. The

initial version of the tool was built as a standalone application. While this worked well
and served as good proof-of-concept, it was a different tool as compared to those already
being used by JSF ALIS systems engineers. JSF ALIS systems engineers were using
IBM’s Rational Rose to create the conceptual model. We explored the concept of
integrating the standalone tool’s capability into Rational Rose. This idea was presented
to and embraced by JSF ALIS systems engineers. This was a significant change to our
implementation approach, but had many benefits.

By integrating new capabilities into an exiting COTS modeling tool, we are able to
leverage many of the COTS features. Developing a graphical rendering engine which is
capable of efficient model layout is very time consuming. Computer languages such as
Java and C# sharp provide many components but the program developer still has to solve
layout or positioning tasks. Another COTS tool feature which can be leveraged is the
ability to reverse engineer data sources. Both Rational Rose and Borland Together have
the capability to reverse engineer common data sources such as ODBC databases. For
our purposes, the applicable features can be summarized as follows:

· General enterprise data model creation
· Limited data source reverse engineering
· Limited model export capability
· Limited model comparison

COTS Modeling Tool Extensibility

Both Rational Rose and Borland Together provide an API to extend their functionality.
Initially the JSF ALIS team used Rational Rose to develop their conceptual data models.
We determined that Rational Rose could easily be extended by creating a Component
Object Model (COM) add-in or object. The COM add-in is typically created in C# and
automatically loaded at run time. The following screen shots show Rational Rose
extended to connect to reverse engineer a SQL Server Database. In the first screen shot,
a new menu item was added allowing the user to reverse engineer a data source. In the
second screen shot, a database selection dialog has been created. The user has selected a
SQL Server 2000 Database and entered username and password information. Once
connected to the database, the user can browse information and create conceptual data
models (bottom-up scenario) or map to existing conceptual data models (top-down
scenario).

Recently the JSF ALIS team changed conceptual modeling tools from IBM’s Rational
Rose to Borland’s Together Control Center. Borland Together has a Java API which
provides access to almost all of its features making a very tight integration possible.
While both Rational Rose and Borland Together provide an extensive API to extend their
capabilities, Borland Together provides access to a much deeper level (any non–private
attribute is accessible). The implications of this are that more of the tool’s features can
be leveraged and more seamless capability integration is possible.

The following screen shots show a prototype integration with Borland Together. In the
first screen shot, a logical model has been created and mapped to a physical data source.
Information associated with the mapping of a specific class is shown in the lower left
frame. The physical data source and connection information can be edited in this frame.
To invoke the comparative analysis capability, the user simply right clicks on the diagram
and selects “Compare”. When a discrepancy is found, the class will be highlighted in red
on the class diagram. To see comparison details, the “Model Difference” dialog is
invoked by right clicking on a class and selecting the “Compare/Repair” difference menu
option. The resulting dialog shows a side by side comparison of the two models in detail.
The dialog indicates there are no differences between the logical or physical data models.

The second screen shot shows that discrepancies have been found in the data model. The
“Person” and “Business” classes are highlighted on the class diagram. This quickly and
intuitively shows the user that a problem in the data model has been found. By
highlighting a class with discrepancies, the user will be able to zoom out on a large model
and easily find were there are problems. To see specifically see where the problem is, the
user right clicks on the class and selects ”Compare”. Model discrepancies in the “Model
Difference” dialog are also identified in red. The comparative analysis capability has
detected differences in the “Person” and “Business” model mappings. The “Person”
class has a type mismatch and the “Business” class has a case mismatch.

The capabilities we are continuing to investigate are listed below.

· Mismatches of Interest: The capability to specify the types of conceptual vs.
physical data model mismatches which are of interest.

· Model Repair: The capability to repair either the physical or conceptual data
model when discrepancies are found.

· Candidate Best Fit Model: A best fit capability which automatically searches data
sources for a physical data model that most closely matches the logical data
model.

· Domain Dictionary: A domain dictionary to support an intelligent physical data
searches.

· Extended Reverse Engineering: The capability to reverse engineer other,
potentially non-standard data sources. As JSF ALIS evolves and prognostic
maintenance capabilities added, information from data sources such as
NALCOMIS, DeckPlate and CAMS will need to be analyzed. LITS from the
United Kingdom will also need to be analyzed.

· Impact Analysis Capture: The ability to capture the amount of impact to access
the cost of a change to the conceptual or physical models.

6.0 Conclusion

The maintenance challenges and associated costs of the Joint Strike Fighter (JSF)
Program, DOD’s largest acquisition program to date, will be unprecedented in
aeronautical history. At the heart of these challenges is designing, developing, validating
and maintaining JSF’s unified enterprise model and keeping it consistent with the data
sources it accesses. In the JSF environment, information failure can lead to mission
failure.

Our research to date has demonstrated the feasibility of developing tools and techniques
for developing JSF’s conceptual model, integrating it with existing data sources, and
maintaining consistency among these models in the face of these dynamically changing
structures. Our initial data discovery capability has been demonstrated using several
operational military data sources, without modification or simplification, and has greatly
improved our engineers’ ability to map those sources to an evolving conceptual model.
This has been demonstrated for both top-down data engineering, starting with the
conceptual model and mapping to data sources, and for bottom-up data engineering,
beginning with the data sources and synthesizing a common conceptual model from
them. We have successfully integrated these techniques into two commercial design
products mitigate the problem of stovepiped applications and the data they produce. We
have extended these products to support side-by-side comparison of data sources and
conceptual data models, facilitating the identification of discrepancies to support the
evolutionary engineering required by JSF. Finally, we have demonstrated the capability
to continuously validate consistency among the data models and verify whether changes
requiring modification have occurred. As this capability is fully implemented, all

indications are that it will greatly simplify the systems engineering tasks for JSF’s
enterprise modelers.

7.0 References

[JSFSDD02] Joint Strike Fighter SDD, Joint & International Interoperability Challenge
Briefing, Lockheed Martin, September 2002

[JSFALISPDR04] Joint Strike Fighter Autonomic Logistic Information System
Preliminary Design Review-1, Lockheed Martin, March 1, 2004 –March
4, 2004

[LAM94] LaMonica, Frank S. et al., “Automated System Engineering Automation
(ASEA) for the 21st Century.” National Council on Systems Engineering
(NCOSE) Conference, July 1994.

